Quantum Trajectories, State Diffusion and Time Asymmetric Eventum Mechanics

نویسنده

  • V P BELAVKIN
چکیده

We show that the quantum stochastic Langevin model for continuous in time measurements provides an exact formulation of the Heisenberg uncertainty error-disturbance principle. Moreover, as it was shown in the 80’s, this Markov model induces all stochastic linear and non-linear equations of the phenomenological ”quantum trajectories” such as quantum state diffusion and spontaneous localization by a simple quantum filtering method. Here we prove that the quantum Langevin equation is equivalent to a Dirac type boundaryvalue problem for the second-quantized input ”offer waves from future” in one extra dimension, and to a reduction of the algebra of the consistent histories of past events to an Abelian subalgebra for the “trajectories of the output particles”. This result supports the wave-particle duality in the form of the thesis of Eventum Mechanics that everything in the future is constituted by quantized waves, everything in the past by trajectories of the recorded particles. We demonstrate how this time arrow can be derived from the principle of quantum causality for nondemolition continuous in time measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eventum Mechanics of Quantum Trajectories: Continual Measurements, Quantum Predictions and Feedback Control

Quantum mechanical systems exhibit an inherently probabilistic nature upon measurement which excludes in principle the singular direct observability continual case. Quantum theory of time continuous measurements and quantum prediction theory, developed by the author on the basis of an independent-increment model for quantum noise and nondemolition causality principle in the 80’s, solves this pr...

متن کامل

یک نظریه جایگزین برای مکانیک بوهمی

 In this article, a causal model on the basis of trajectory is introduced for description of quantum systems. This theory is structurally very similar to Bohme mechanics, and like Bohme theory reproduces all statistical consequences of standard quantum mechanics. Particle trajectories in this model are different from anticipated ones by Bohme model. Quantum potential (force) form, which is give...

متن کامل

Quantum State Diffusion and Time Correlation Functions

In computing the spectra of quantum mechanical systems one encounters the Fourier transforms of time correlation functions, as given by the quantum regression theorem for systems described by master equations. Quantum state diffusion (QSD) gives a useful method of solving these problems by unraveling the master equation into stochastic trajectories; but there is no generally accepted definition...

متن کامل

From Time-symmetric Microscopic Dynamics to Time-asymmetric Macroscopic Behavior: An Overview

Time-asymmetric behavior as embodied in the second law of thermodynamics is observed in individual macroscopic systems. It can be understood as arising naturally from time-symmetric microscopic laws when account is taken of a) the great disparity between microscopic and macroscopic scales, b) a low entropy state of the early universe, and c) the fact that what we observe is the behavior of syst...

متن کامل

v 1 2 6 A ug 1 99 6 From quantum trajectories to classical orbits

Recently it has been shown that the evolution of open quantum systems may be " unraveled " into individual " trajectories, " providing powerful numerical and conceptual tools. In this letter we use quantum trajectories to study mesoscopic systems and their classical limit. We show that in this limit, Quantum Jump (QJ) trajectories approach a diffusive limit very similar to the Quantum State Dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005